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The problem of the equilibrium of a rod on a rough horizontal plane when there are dry friction forces is considered. The 
equilibrium conditions which ensure that the rod remains at rest are determined by solving the problem of an extremum. The 
results obtained are compared with the well-known result for a Zhukovskii bench. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider a rigid body, representing a rod, at rest on a rough horizontal plane. We will introduce a 
Cartesian system of coordinates Oxy so that the x axis is directed along the rod, while the point 0 
coincides with one of its ends (Fig. 1). We will denote the length of the rod by 1 and the density per 
unit length by p. We will assume that the rod is infinitely thin and that its weight is distributed uniformly 
over the whole length. This assumption corresponds to the case when the rigidity of the rod about the 
y axis is considerably less than the rigidity about the vertical axis. Suppose external forces are applied 
to the rod in the Oxy plane. We will denote the principal vector of these external forces by F, its 
projections on to thex andy axes by F, and Fy respectively, and the principal moment of all the external 
forces about the centre of the rod by MO. Dry friction forces, which obey Coulomb’s law, act between 
the rod and the plane. We will write Coulomb’s law in the form 

d%hpgk, x~[O,f] (1.1) 

where k is the friction coefficient, and X(x) and Y(x) are the linear densities of the projections of the 
friction forces on to the x and y axes respectively. 

We will write the equilibrium conditions of the rod acted upon by the applied forces as 

F,+i X&=0, q+; Y&=0, M,+i (x-f)Y&=O (I.3 
0 0 0 

We formulate the problem as follows: it is required to find the conditions which must be imposed 
on F and MO so that the rod is in a state of equilibrium. Hence, we must find for what values of F,, Fy 
and MO, functions X(x) and Y(x) exist which satisfy relations (1.1) and (1.2). 

2. THE EQUIVALENT PROBLEM OF AN EXTREMUM 

To simplify the subsequent calculations we will introduce the dimensionless variables 

y’ = Y 
wk 

F +F” F;- Y 

P&l ’ P&l ’ 
M’d!!L 

P&l2 
(2.1) 

and we will write conditions (1.2) in the form (everywhere henceforth we will omit the prime on the 
dimensionless variables) 

d Xci!r=F,, d Yd.x=F,, / (x-+)Ydx=hl 
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Fig. 1 

Condition (1.1) takes the form 

x2+y2s 1, XE [O,l] (2.3) 

It is required to determine the set Q in the three-dimensional space (F’, Fy, M), for the points of 
which equilibrium occurs, i.e. functions X(x) and Y(x) exist which satisfy relations (2.2) and (2.3). 

We will first establish some general properties of the set Sz. 
1. The set Q is convex. This property follows from the convexity of the set of permissible equations, 

determined by condition (2.3), and from the linearity of transformation (2.2). 
2. The set Q is symmetrical about the three coordinate planes F, = 0, Fy = 0 and M = 0. Really, if 

the functions X(x) and Y(x) correspond to the set (F,, Fy, M), then, as can easily be verified using 
conditions (2.2) and (2.3), for the set (-F,, Fy, M) we can take the functions -X(x) and Y(x), for the set 
(F,, -Fy, M) we can take the functions X(x) and -Y( l-x), and for the set (Fx, Fy, 44) we can take the 
functions X(x) and Y( 1-x). 

We will formulate the problem of the optimum control 

y;=x, y;=y, y;=(x-l/2)Y. X2+Y2<I 

YI (0) = Y20 = Y3(0) = 0 

(2.4) 

The primes denote derivatives with respect to x, and the quantities X and Y play the role of control 
functions. 

Solving (2.4), we obtain the greatest possible value of M for each pair F,, Fy’ In view of the convexity 
of the set Q this means that we will obtain part of the boundary of this set. The remaining parts of the 
boundary are obtained using the above-mentioned properties of symmetry of this set. Hence, to 
determine the set Q it is sufficient to solve the problem of the optimum control (2.4) for different 
F, 3 0 and Fy 2 0. 

3. THE SOLUTION OF THE PROBLEM OF THE OPTIMUM CONTROL 

The Hamiltonian for problem (2.4) has the form 

H=p,X+P,Y+p,(x-w (3.1) 

Here pi(i = 1, 2, 3) are conjugate variables. If follows from the conjugate system that all the pi are 
constant. Without loss of generality we can put p3 = 1. 

We will obtain the maximum of Hamiltonian (3.1) under the limitation X2 + Y2 6 1. It is obvious 
that the required maximum is reached whenX2 + Y* = 1. We will use the method of Lagrange multipliers 
to determine X and Y, which give a maximum to the Hamiltonian 

Equating the partial derivatives i3Llax and aL/dy to zero, we obtain equations, by solving which for X 
and Y we obtain 

x= PI Y= P+x 

[pf +(p+x)qK ’ [P: +(P+x121fi 
; P’pz-3 (3.2) 
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Here we have chosen the signs corresponding to the maximum of Hamiltonian (3.1). Sincep, = const 
and X does not change in sign when x E [0, 11, then to satisfy the first condition of (2.2) when F, 3 0, 
it is necessary that pi 2 0. 

Taking the integrals (2.2) we obtain 

F, =p, In 
p+l+A, 

P+& 
, Fy =A, -A,; M=;AO-+ -5~~ (3.3) 

Formulae (3.3) define the parametric dependence M(F,, Fy) in terms of the parameterspr andp. It 
is not possible to obtain this relation in explicit form by eliminatingpt andp. We will first consider special 
cases in which an analytical solution is available. 

1. Suppose Fj + F; = 1. We will shown that infinitely large values of the conjugate variables 
correspond to this case. We put 

PI=P9r* P=Ph P-)” (3.4) 

where q1 and q2 are new constants and p. is a large parameter. Substituting expression (3.4) into the 
first two relations of (3.3) and expanding them in inverse powers of p, we obtain 

(3.5) 

so that the condition F,” f Fy = 1 is satisfied. We substitute relations (3.4) into expression (3.2) and 
put j.r + a. Comparing the results obtained with Eqs (39, we see that X = F,, Y = F,,. Consequently, 
by the last equation of (2.2) we have M = 0. Hence, for all point on the circle F,’ f F; = 1 the principal 
moments of the external forces must equal zero. 

0.3 

Fig. 2 

IO.3 
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2. Suppose F, = Fy = 0. Then 

; Xdx=O 
0 

and since X 2 0 whenx E [0, 11, then X E 0. It follows from relations (3.2) that p1 = 0. Substituting this 
value into (3.3) we obtain Fy = 0,p = -l/z and M = l/d. Hence, the maximum moment when the principal 
vector of the forces is equal to zero is l/d. It is clear from physical considerations that this value of the 
moment is the maximum possible value for any F, and Fy. 

The system of linear equations (the first two equations of (3.3)) inpl andp was solved numerically 
by Newton’s method for each pair F,, Fy, which satisfy the relation Fj + Fy G 1. Then, we determined 
the moment A4 from the third formula of (3.3). The results of the calculation are presented in Fig. 2, 
where we show the set Q obtained, in Fig. 3, where for A4 > 0 we show its sections by the planes 
F, = const (the values of F, are indicated in the figure), and in Fig. 4, where for Fy > 0 we show sections 
of the set 52 by the planes M = const (the values of M are shown in the figure). In view of the symmetry 
properties of the set Q about the planes M = 0 and Fy = 0 we only shown half the corresponding sections 
in Figs 3 and 4. 

4. COMPARISON WITH ZHUKOVSKII’S RESULT 

In [l] Zhukovskii obtained the equilibrium conditions of a body resting on two points, acted upon by 
a normal force applied in the middle of the section connecting these points, and also force F, lying in 
theq plane. More general equilibrium conditions of bodies on a plane were considered [2] for different 
conditions of rest (guaranteed equilibrium conditions in the case of static uncertainty). We will denote 
the angle between the vector F and the x axis by cp and the distance from the origin of coordinates to 
the line of action of the force F by h > 0 (Fig. 5). The equilibrium conditions, obtained in [l], reduce 
to the form [2] 

F 

i 

[l+h*(acos(p)-*I-“*, ha-’ <cos*cpIsincpI-’ 

Nk= (ha-‘+(sincpI)-‘, ha-’ > cos* (p 1 sin cp I-’ (4.1) 

Here a is half the distance between the masses, and N is the normal force applied in the middle of 
the segment connecting the point masses. In order to compare Zhukovskii’s result with the solution of 
the problem obtained in Section 3, we will change to the dimensionless variables given in (2.1) and put 
a = l/2, N = 2mg = pig and s = hla. We obtain 

F, =~((p,s)coscp, Fy =&p.s)sincp, M=%&(W) (4.2) 

5((P* s) = 
[1+(s/coscp)*]-“*, s<cos*(pIsincpI-’ 

(s+ 1 sin cp I)-‘, s 2 cos* cp I sin cp I-’ 

Equations (4.2), which specify the parametric relation M(F,, F,), can be solved for cp and s. We 
have 

(4.3) 

Formula (4.3) is true when Fy 2 0, -1 < Fx =S 1. Relations (4.3) determine the set Q’ in the space of 
the quantities (F,, Fy, M), the points of which correspond to equilibrium states. The set Q* is similar 
to the set 51 and possesses.the same symmetry properties. 

We will compare the values of the moment given by formula (4.3) with the results obtained in Section 
3. It is easy to see that when Fj + Fy = 1 the value of the moment M = 0, as in the case of a rod. When 
F, = Fy = 0 the moment reaches its maximum value (for all F,, Fy) and is equal to ‘/2, which is double 
the moment when the principal vector of the forces for a rod is equal to zero. In Fig. 6, for M 2 0 we 
show sections of the set Q* for Zhukovskii’s problem by the planes F, = const; the values of F, are 
shown in the figure. In Fig. 7, for Fy > 0, we show sections of the set Q’ by the planes A4 = const; the 
values of M are indicated in the figure. In view of the symmetry of the set Q* about the planes M = 0 
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0 
-1.0 -0.5 0 0.5 F, I.0 

Fig. 7 

and Fy = 0, in Figs 6 and 7, as in Figs 3 and 4, we only show half the corresponding sections. Notice 
both the general similarity and the considerable quantitative differences between the data shown in 
Figs 6 and 3 and Figs 7 and 4, respectively. 
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